Trọng tâm của tam giác là giao điểm của ba đường trung tuyến của tam giác đó. Vậy cách xác định trọng tâm tam giác như thế nào? Các tính chất trọng tâm tam giác là gì? Là câu hỏi được rất nhiều bạn học sinh quan tâm? Hãy cùng Pgdphurieng.edu.vn theo dõi bài viết dưới đây để nắm được toàn bộ kiến thức nhé.
Thông qua tài liệu này các bạn học sinh lớp 7 có thêm những gợi ý tham khảo, nhanh chóng nắm vững được kiến thức về trọng tâm để có thể giải các bài tập hình học từ cơ bản đến nâng cao. Vậy sau đây là nội dung chi tiết tài liệu, mời các bạn cùng đón đọc.
1. Định nghĩa Trọng tâm tam giác
Trọng tâm của tam giác là giao điểm của ba đường trung tuyến của tam giác đó
Theo sách giáo khoa hiện hành, từ năm học lớp 7 học sinh đã được tiếp xúc với trọng tâm. Định nghĩa trọng tâm được sách giáo khoa ghi lại như sau: “Trong 1 tam giác có 3 đường trung tuyến. 3 đường trung tuyến này cùng đi qua một điểm, điểm này được gọi là trọng tâm của tam giác”.
Ví dụ: tam giác ABC với 3 đường trung tuyến lần lượt là AM, BN, CP. 3 đường trung tuyến của tam giác ABC này lần lượt đi qua giao điểm G. G chính là trọng tâm của tam giác ABC.
Tam giác ABC có các đường trung tuyến AM, BN, CP cùng đi qua G.
Điểm G gọi là trọng tâm tam giác ABC.
2. Tính chất trọng tâm tam giác
Tính chất của trọng tâm tam giác là: Khoảng cách từ trọng tâm tới 3 đỉnh của tam giác bằng 2/3 độ dài đường trung tuyến ứng với đỉnh đó.
Giả sử, tam giác ABC có 3 đường trung tuyến là AM, BN, CP với G là trọng tâm như hình. Theo tính chất trên, ta có:
Tam giác ABC có G là trọng tâm
Khi đó, ta có:
Ví dụ: Cho tam giác ABC có trọng tâm G. Biết AM là đường trung tuyến với M thuộc cạnh BC và AM = 12cm. Tính độ dài đoạn AG và GM?
Ngoài ra, chúng ta còn một số hằng đẳng thức khác liên quan đến trọng tâm tam giác. Xét theo khía cạnh, điểm G chia mỗi đường trung tuyến thành 3 phần bằng nhau.
– Đối với đường trung tuyến AM, ta có:
AM = 3 GM; AM = AG; AG = 2 GM; GM = AG,…
– Đối với đường trung tuyến BN, ta có:
BN = 3 GN; BN = BG; BG = 2 GN; GN = BG,…
– Đối với đường trung tuyến CP, ta có:
CP = 3 GP; CP = CG; CG = 2 GP; GP = CG,…
3. Cách xác định trọng tâm tam giác
Để xác định trọng tâm của một tam giác ta thực hiện:
Cách 1:
- Tìm trung điểm M của BC sao cho MC = MB
- Nối A với M ta được đường trung tuyến AM.
- Tương tự với các đường trung tuyến còn lại.
- Giao 3 đường trung tuyến là điểm G. Suy ra G chính là trọng tâm tam giác ABC.
Cách 2:
- Tìm trung điểm M của BC sao cho MC = MB
- Nối A với M ta được đường trung tuyến AM.
- Trên đoạn thẳng AM lấy điểm G sao cho:
- Vậy theo tính chất trọng tâm ta có G chính là trọng tâm tam giác ABC.
Cho tam giác ABC có AM, BN, CP lần lượt là ba đường trung tuyến tại đỉnh A, B, C. Ta có giao của ba đường trung tuyến là điểm G. Vậy G là trọng tâm của tam giác ABC.
Ta có tính chất:
4. Trọng tâm của các hình học đặc biệt
A. Trọng tâm tam giác vuông
Tam giác ABC vuông tại B, từ B vẽ đường trung tuyến BA, vì BA là đường trung tuyến của góc vuông nên: BA = 1/2 CD=AD = AC.
Vậy tam giác ADB và tam giác ABC lần lượt cân tại A,
B. Trọng tâm tam giác cân
Cho tam giác ABC cân tại A, G là trọng tâm tam giác ABC. Vì tam giác cân tại A, nên AG vừa là đường trung tuyến, vừa là đường cao và là đường phân giác của tam giác ABC.
Hệ quả:
– AG vuông góc với BC.
C. Trọng tâm tam giác đều
Cho tam giác ABC đều, G là giao điểm ba đường trung tuyến. Theo tính chất của tam giác đều ta có G vừa là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC.
D. Trọng tâm tứ diện
Ta có G là trọng tâm tứ diện ABCD.
Trọng tâm tứ diện là giao điểm của bốn đường thẳng nối đỉnh và trọng tâm của tam giác đối diện.
5. Bài tập trọng tâm của tam giác
Bài tập: Cho tam giác ABC, trung tuyến BM = CN. BM cắt CN tại G. Chứng minh tam giác ABC cân tại A
Lời giải:
Vì BM và CN là hai đường TT của tam giác mà BM giao CN tại G, nên ta có:
Mà BM = CN nên BG = CN và GN = GM
Xét ∇ BNG và ta có:
BG = CN
GN = GM
( 2 góc đối đỉnh)
Suy ra : BNG đồng dạng CMG
Suy ra: BN = CM (1)
mà M và N lần lượt là trung điểm của AB và AC (2)
Từ (1) và (2) ta có AB = AC => Tam giác ABC cân tại A( đpcm).
Như vậy, với các kiến thức cơ bản và bài tập luyện tập làm quen nói trên, Pgdphurieng.edu.vn hi vọng bạn đọc đã có cho mình sự hiểu biết nhất định về trọng tâm. Nắm vững những kiến thức về trọng tâm để có thể giải các bài tập hình học từ cơ bản đến nâng cao.
Cảm ơn bạn đã theo dõi bài viết Trọng tâm tam giác: Khái niệm, tính chất và cách xác định Trọng tâm của tam giác của Pgdphurieng.edu.vn nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.