Giải Toán 10 Bài 1: Tọa độ của vectơ sách Chân trời sáng tạo là tài liệu vô cùng hữu ích giúp các em học sinh lớp 10 có thêm nhiều gợi ý tham khảo, dễ dàng đối chiếu kết quả khi làm bài tập toán trang 44, 45 tập 2.
Giải SGK Toán 10 Bài 1 trang 44, 45 Chân trời sáng tạo tập 2 được biên soạn chi tiết, bám sát nội dung trong sách giáo khoa. Mỗi bài toán đều được giải thích cụ thể, chi tiết. Qua đó giúp các em củng cố, khắc sâu thêm kiến thức đã học trong chương trình chính khóa; có thể tự học, tự kiểm tra được kết quả học tập của bản thân.
Giải Toán 10 trang 44, 45 Chân trời sáng tạo – Tập 2
Bài 1 trang 44
Bài tập 1. Trên trục (O; cho các điểm A, B, C, D có tọa độ lần lượt là 4; -1; -5; 0.
a. Vẽ trục và biểu diễn các điểm đã cho lên trên trục đó.
b. Hai vectơ và cùng hướng hay ngược hướng.
Gợi ý đáp án
a.
b. Hai vectơ và ngược hướng nhau.
Bài 2 trang 45
Chứng minh rằng:
a. = (4; -6) và = (-2; 3) là hai vectơ ngược hướng.
b.= (-2; 3) và = (-8; 12) là hai vectơ cùng hướng.
c. = (0; 4) và = (0; -4) là hai vectơ đối nhau.
Gợi ý đáp án
a. Nhận thấy: ngược hướng.
b. Nhận thấy: cùng hướng.
c. Ta có:
Nhận thấy:
và là hai vectơ đối nhau.
Bài 3 trang 45
Tìm tọa độ các vectơ sau:
Gợi ý đáp án
Bài 4 trang 45
Cho bốn điểm A(3; 5), B(4; 0), C(0; -3), D(2; 2). Trong các điểm đã cho, hãy tìm điểm:
a. Thuộc trục hoành;
b. Thuộc trục tung;
c. Thuộc đường phân giác của góc phần tư thứ nhất
Gợi ý đáp án
a. Điểm B(4; 0) thuộc trục hoành.
b. Điểm C(0; -3) thuộc trục tung.
c. Điểm D(2; 2) thuộc đường phân giác của góc phần tư thứ nhất.
Bài 5 trang 45
Cho điểm . Tìm tọa độ:
a. Điểm H là hình chiếu vuông góc của điểm M trên trục Ox;
b. Điểm M’ đối xứng với M qua trục Ox;
c. Điểm K là hình chiếu vuông góc của điểm M trên trục Oy;
d. Điểm M” đối xứng với M qua trục Oy.
e. Điểm C đối xứng với điểm M qua gốc tọa độ.
Gợi ý đáp án
a.
b. M’ đối xứng với M qua trục là trung điểm của MM’
Vậy
c.
d. M” đối xứng với M qua trục Oy là trung điểm của MM”
Vậy .
e. C đối xứng với M qua gốc tọa độ O nên O là trung điểm của CM.
Vậy
Bài 6 trang 45
Cho ba điểm A(2; 2); B(3; 5), C(5; 5).
a. Tìm tọa độ điểm D sao cho ABCD là hình bình hành.
b. Tìm tọa độ giao điểm hai đường chéo của hình bình hành.
c. Giải tam giác ABC.
Gợi ý đáp án
a. Xét D(x; y). Ta có:
Để ABCD là hình bình hành khi và chỉ khi
Vậy D(4; 2)
b. Gọi M là giao điểm hai đường chéo của hình bình hành ABCD.
Vậy
c. Ta có:
Suy ra:
Bài 7 trang 45
Cho tam giác ABC có các điểm M(2; 2), N(3; 4), P(5; 3) lần lượt là trung điểm của các cạnh AB, BC và CA.
a. Tìm tọa độ các đỉnh của tam giác ABC.
b. Chứng minh rằng trọng tâm của tam giác ABC và MNP trùng nhau.
c. Giải tam giác ABC
Gợi ý đáp án
Có M là trung điểm cạnh AB, P là trung điểm cạnh AC nên MP là đường trung bình của tam giác ABC
là hình bình hành
Ta có: N là trung điểm của BC nên
Ta có: M là trung điểm của AB nên
Vậy A(4;1), B(0; 3), C(6; 5)
b. Gọi G là trọng tâm tam giác ABC, ta có:
Gọi G’ là trọng tâm tam giác MNP, ta có:
Từ (1) và (2)
Vậy trọng tâm tam giác ABC trùng với trọng tâm tam giác MNP.
c. Ta có
Suy ra:
Xét tam giác ABC có
Tam giác ABC vuông cân tại A
Bài 8 trang 45
Cho hai điểm A(1; 3), B(4; 2).
a. Tìm tọa độ điểm D nằm trên trục Ox sao cho DA = DB
b. Tính chu vi tam giác OAB.
c. Chứng minh rằng OA vuông góc với AB và từ đó tính diện tích tam giác OAB.
Gợi ý đáp án
a. D nằm trên trục Ox nên D(x; 0)
Ta có:
Vậy
b. Ta có:
Suy ra:
Chu vi tam giác OAB là:
c. Ta có:
Bài 9 trang 45
Tính góc xen giữa hai vectơ trong các trường hợp sau:
Gợi ý đáp án
Bài 10 trang 45
Cho bốn điểm A(7; -3), B(8; 4), C(1; 5), D(0; -2). Chứng minh rằng tứ giác ABCD là hình vuông.
Gợi ý đáp án
Ta có:
Nhận thấy: ABCD là hình bình hành
mà (vì cùng =) hay AB = AD ABCD là hình thoi (1)
Ta có:
Từ (1) và (2) ABCD là hình vuông (đpcm)
Bài 11 trang 45
Một máy bay đang hạ cánh với vận tốc Cho biết vận tốc của gió là và một đơn vị trên hệ trục tọa độ tương ứng với 1 km. Tìm độ dài vectơ tổng hai vận tốc
Gợi ý đáp án
Ta có:
Độ dài của vectơ tổng hai vận tốc là:
Cảm ơn bạn đã theo dõi bài viết Toán 10 Bài 1: Tọa độ của vectơ Giải SGK Toán 10 trang 44 – Tập 2 sách Chân trời sáng tạo của Pgdphurieng.edu.vn nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.