Giải Toán 8: Ôn tập cuối năm trang 130, 131, 132 giúp các em học sinh lớp 8 ôn tập, tham khảo gợi ý giải các bài tập trong phần ôn tập cuối năm Toán 8 tập 2. Nhờ đó sẽ nắm được các dạng toán, cũng như ôn tập cuối năm đạt kết quả cao.
Giải bài tập phần Đại số Toán 8 tập 2 trang 130, 131
Bài 1 (trang 130 SGK Toán 8 Tập 2)
Phân tích các đa thức sau thành nhân tử:
a) a2 – b2 – 4a + 4;
b) x2 + 2x – 3;
c) 4x2y2 – (x2 + y2)2 ;
d) 2a3 – 54b3.
Gợi ý đáp án:
a) a2 – b2 – 4a + 4
= a2 – 4a + 4 – b2
= (a – 2)2 – b2
= (a – 2 + b)(a – 2 – b)
= (a + b – 2)(a – b – 2)
b) x2 + 2x – 3
= x2 + 2x + 1 – 4
= (x + 1)2 – 22
= (x + 1 + 2)(x + 1 – 2)
= (x + 3)(x – 1)
c) 4x2y2 – (x2 + y2)2
= (2xy)2 – (x2 + y2)2
= (2xy + x2 + y2)(2xy – x2 – y2)
= – (x2 + 2xy + y2)(x2 – 2xy + y2)
= -(x + y)2 .(x – y)2
d) 2a3 – 54b3
= 2(a3 – 27b3)
= 2[a3 – (3b)3]
= 2(a – 3b)(a2 + 3ab + 9b2)
Bài 2 (trang 130 SGK Toán 8 Tập 2)
a) Thực hiện phép chia:
(2x4 – 4x3 + 5x2 + 2x – 3):(2x2 – 1)
b) Chứng tỏ rằng thương tìm được trong phép chia trên luôn luôn dương với mọi giá trị của x.
Gợi ý đáp án:
a) Thực hiện phép chia
Vậy (2x4 – 4x3 + 5x2 + 2x – 3) : (2x2 – 1) = x2 – 2x + 3.
b) Ta có:
x2 – 2x + 3
= x2 – 2x + 1 + 2
= (x – 1)2 + 2
Vì (x – 1)2 ≥ 0 với ∀ x
⇒ x2 – 2x + 3 = (x – 1)2 + 2 ≥ 2 > 0 với ∀ x
Vậy thương tìm được luôn luôn dương với mọi giá trị của x.
Bài 3 (trang 130 SGK Toán 8 Tập 2)
Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8.
Gợi ý đáp án:
Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z).
Hiệu bình phương của hai số lẻ đó bằng:
(2a + 1)2 – (2b + 1)2
= (4a2 + 4a + 1) – (4b2 + 4b + 1)
= (4a2 + 4a) – (4b2 + 4b)
= 4a(a + 1) – 4b(b + 1)
Tích của hai số tự nhiên liên tiếp luôn chia hết cho 2
⇒ a.(a + 1) ⋮ 2 và b.(b + 1) ⋮ 2.
⇒ 4a(a + 1) ⋮ 8 và 4b(b + 1) ⋮ 8
⇒ 4a(a + 1) – 4b(b + 1) ⋮ 8.
Vậy (2a + 1)2 – (2b + 1)2 chia hết cho 8 (đpcm).
Bài 4 (trang 130 SGK Toán 8 Tập 2)
Rút gọn rồi tính giá trị của biểu thức sau tại :
Gợi ý đáp án:
Điều kiện:
+ Ngoặc vuông thứ nhất:
+ Ngoặc vuông thứ hai:
Nên
Tại giá trị của biểu thức là:
Bài 5 (trang 130 SGK Toán 8 Tập 2)
Chứng minh rằng:
Gợi ý đáp án:
Xét hiệu hai vế:
Bài 6 (trang 130 SGK Toán 8 Tập 2)
Tìm các giá trị nguyên của x để phân thức M có giá trị là một số nguyên:
Để M nguyên thì tử số phải chia hết cho mẫu số.
Gợi ý đáp án:
Điều kiện:
Ta có:
Như vậy,
Do x nguyên nên M có giá trị nguyên khi có giá trị nguyên.
Tức 2x – 3 là ước của
+) (thỏa mãn đk)
+) (thỏa mãn đk)
+) (thỏa mãn đk)
+) (thỏa mãn đk)
Vậy
Bài 7 (trang 130 SGK Toán 8 Tập 2)
Giải các phương trình:
Gợi ý đáp án:
Vậy phương trình có tập nghiệm là
Vậy phương trình đã cho vô nghiệm hay
Vậy phương trình có vô số nghiệm hay
Bài 8 (trang 130 SGK Toán 8 Tập 2)
Giải các phương trình:
a. |2x – 3| = 4; b. |3x – 1| – x = 2.
Gợi ý đáp án:
a. |2x – 3| = 4
+) Trường hợp 1: |2x-3| = 2x-3 khi
Ta có:
+) Trường hợp 2: |2x-3| = -2x+3 khi
Ta có:
Vậy phương trình có hai nghiệm .
b. |3x – 1| – x = 2.
+) Trường hợp 1: Khi ta có:
+) Trường hợp 2: Khi ta có:
Vậy phương trình có hai nghiệm .
Bài 9 (trang 130, 131 SGK Toán 8 Tập 2)
Giải phương trình:
Gợi ý đáp án:
Vậy tập nghiệm của phương trình là:
Bài 10 (trang 131 SGK Toán 8 Tập 2)
Giải các phương trình:
Gợi ý đáp án:
ĐKXĐ:
Vậy phương trình vô nghiệm
ĐKXĐ:
Vậy phương trình có tập nghiệm là
Bài 11 (trang 131 SGK Toán 8 Tập 2)
Giải các phương trình:
a) b)
Gợi ý đáp án:
a)
⇔(x + 1)(3x – 3 + 2) =0
⇔(x + 1)(3x – 1)=0
Vậy
ĐKXĐ:
Vậy phương trình có tập nghiệm là
Bài 12 (trang 131 SGK Toán 8 Tập 2)
Một người đi xe máy từ A đến B với vận tốc 25km/h. Lúc về người đó đi với vận tốc 30km/h nên thời gian về ít hơn thời gian đi là 20 phút. Tính quãng đường AB.
Gợi ý đáp án:
Gọi độ dài quãng đường AB là x (km), (x > 0).
Thời gian đi từ A đến B là: (giờ)
Thời gian đi từ B về A là: (giờ)
Đổi 20 phút = giờ
Thời gian về ít hơn thời gian đi là 20 phút nên ta có phương trình:
(thỏa mãn điều kiện x > 0).
Vậy quãng đường AB dài 50 km.
Bài 13 (trang 131 SGK Toán 8 Tập 2)
Một xí nghiệp dự định sản xuất 1500 sản phẩm trong 30 ngày. Nhưng nhờ tổ chức lao động hợp lý nên thực tế đã sản xuất mỗi ngày vượt 15 sản phẩm. Do đó xí nghiệp đã sản xuất không những vượt mức dự định 255 sản phẩm mà còn hoàn thành trước thời hạn. Hỏi thực tế xí nghiệp đã rút ngắn được bào nhiêu ngày?
Gợi ý đáp án:
Theo dự định, mỗi ngày xí nghiệp sản xuất được:
Thực tế, mỗi ngày xí nghiệp sản xuất được:
50 + 15 = 65 (sản phẩm)
Tổng số sản phẩm thực tế xí nghiệm sản xuất được:
1500 + 255 = 1755 (sản phẩm)
Thời gian thực tế xí nghiệm sản xuất là:
1755 : 65 = 27 (ngày)
Vậy số ngày được rút ngắn so với dự định là:
30 – 27 = 3 (ngày).
Bài 14 (trang 131 SGK Toán 8 Tập 2)
Cho biểu thức:
a) Rút gọn biểu thức A.
b) Tính giá trị của A tại x, biết .
c) Tìm giá trị của x để A < 0.
Gợi ý đáp án:
a)
b) Giá trị của A tại
+) Nếu (tmđk) thì
Nếu (tmđk) thì
c) A < 0 khi hay x > 2 (tmđk)
Vậy x>2 thì A<0
Giải bài tập phần Hình học Toán 8 tập 2 trang 131, 132
Bài 1 (trang 131 SGK Toán 8 Tập 2)
Dựng hình thang ABCD (AB // CD), biết ba cạnh: AD = 2cm, CD = 4cm, BC = 3cm và đường chéo AC = 5cm.
Gợi ý đáp án:
* Dựng hình:
– Dựng tam giác ADC có AD = 2cm, DC = 4cm, CA = 5cm.
– Dựng tia Ax song song với CD.
– Đường tròn (C; 3cm) cắt Ax tại B1 và B2.
Hình thang ABCD với B ≡ B1 hoặc B ≡ B2 là hình thang cần dựng.
* Chứng minh
+ Tứ giác ABCD có AD = 2cm, DC = 4cm, CA = 5cm.
+ Ax // CD ⇒ AB // CD ⇒ ABCD là hình thang.
+ B ∈ (C; 3cm) ⇒ BC = 3cm.
* Biện luận: Bài toán có hai nghiệm hình.
Bài 2 (trang 131 SGK Toán 8 Tập 2)
Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều. Gọi E, F, G theo thứ tự là trung điểm của các đoạn thẳng OA, OD và BC. Chứng minh rằng tam giác EFG là tam giác đều.
Gợi ý đáp án:
Vì tam giác ABO đều (giả thiết)
(tính chất tam giác đều)
Vì AB // CD (gt)
Mà (đối đỉnh)
⇒ tam giác CDO cũng đều (dấu hiệu nhận biết tam giác đều)
(tính chất tam giác đều)
Xét ∆AOD và ∆BOC có:
+) AO = BO (tam giác ABO đều)
+) (đối đỉnh)
+) OD = OC (cmt)
(c.g.c)
(2 cạnh tương ứng)
Ta có: E, F là trung điểm của AO và DO (gt)
⇒ EF là đường trung bình của tam giác AOD (dấu hiệu nhận biết đường trung bình của tam giác)
(1) (tính chất đường trung bình của tam giác)
CF là đường trung tuyến của tam giác đều CDO nên CF ⊥ DO (tính chất tam giác đều)
Trong tam giác vuông CFB, FG là đường trung tuyến ứng với cạnh huyền nên:
(2)
Chứng minh tương tự:
BE là đường trung tuyến của tam giác đều ABO nên BE ⊥ AO (tính chất tam giác đều)
Trong tam giác vuông CEB, EG là đường trung tuyến ứng với cạnh huyền nên:
(3)
Từ (1), (2), (3) suy ra EF = GF = EG nên tam giác EFG là tam giác đều (dấu hiệu nhận biết tam giác đều)
Bài 3 (trang 131 SGK Toán 8 Tập 2)
Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Tam giác ABC phải có điều kiện gì thì tứ giác BHCK là:
a) Hình thoi? ; b) Hình chữ nhật?
Gợi ý đáp án:
Ta có: CE ⊥ AB (gt)
KB ⊥ AB (gt)
⇒ BK // CE (1)
Tương tự BH // KC (2)
Từ (1) và (2) ⇒ BHCK là hình bình hành.
Gọi M là giao điểm của hai đường chéo BC và HK.
a) Tam giác ABC có hai đường cao BD và CE cắt nhau tại H nên H là trực tâm tam giác ABC
⇒ AH ⊥ BC. (3)
BHCK là hình thoi
⇔ HM ⊥ BC ( trong đó M là giao điểm của hai đường chéo HK và BC) (4)
Từ (3) và (4) suy ra: A, H, M thẳng hàng.
Khi đó, tam giác ABC có AM là đường cao đồng thời là đường trung tuyến nên tam giác ABC là cân tại A.
b) BHCK là hình chữ nhật ⇔ BK ⊥ BH.
Ta lại có BK ⊥ AB (gt) nên H, B, A thẳng hàng.
Mà nên Vậy tam giác ABC là tam giác vuông ở A.
Bài 4 (trang 132 SGK Toán 8 Tập 2)
Cho hình bình hành ABCD. Các điểm M, N theo thứ tự là trung điểm của AB, CD. Gọi E là giao điểm của AN và DM, K là giao điểm BN và CM. Hình bình hình ABCD phải có điều kiện gì để tứ giác MENK là:
a) Hình thoi?;
b) Hình chữ nhật?;
c) Hình vuông?
Gợi ý đáp án:
ABCD là hình bình hành ⇒ AB = CD.
M là trung điểm AB ⇒ AM = MB = AB/2.
N là trung điểm CD ⇒ CN = DN = CD/2.
⇒ AM = MB = CN = DN.
+ Tứ giác BMDN có: BM // DN và BM = DN
⇒ BMDN là hình bình hành
⇒ DM // BN hay ME // NK
+ Tứ giác AMCN có: AM // NC, AM = NC
⇒ AMCN là hình bình hành
⇒ AN // CM hay EN // MK.
+ Tứ giác MENK có: ME // NK và NE // MK
⇒ MENK là hình bình hành.
a) MENK là hình thoi
⇔ MN ⊥ EK.
⇔ CD ⊥ AD (Vì EK // CD và MN // AD)
⇔ ABCD là hình chữ nhật.
b) MENK là hình chữ nhật
⇔ MN = EK
Mà MN = BC; (vì tam giác MCD có E và K lần lượt là trung điểm MD, MC nên EK là đường trung bình của tam giác MCD).
⇔ CD = 2.BC.
c) MENK là hình vuông
⇔ MENK là hình thoi và đồng thời là hình chữ nhật
⇔ ABCD là hình chữ nhật và có CD = 2.BC.
Bài 5 (trang 132 SGK Toán 8 Tập 2)
Trong tam giác ABC, các đường trung tuyến AA’ và BB’ cắt nhau ở G. Tính diện tích tam giác ABC biết rằng diện tích tam giác ABG bằng S.
Gợi ý đáp án:
Ta có: AC = 2AB’ (tính chất trung tuyến)
Mà có cùng chiều cao hạ từ đỉnh B xuống đáy AC.
(1)
Xét có các đường trung tuyến AA’ và BB’ cắt nhau ở G (gt)
⇒ G là trọng tâm của (định nghĩa trọng tâm)
⇒ (tính chất trọng tâm)
Suy ra chiều cao hạ từ B’ xuống đáy AB bằng lần chiều cao hạ từ G xuống đáy AB
Mà chung đáy AB
Nên (2)
Từ (1), (2) suy ra
Bài 6 (trang 132 SGK Toán 8 Tập 2)
Cho tam giác ABC và đường trung tuyến BM. Trên đoạn thẳng BM lấy điểm D sao cho . Tia AD cắt BC ở K. Tìm tỉ số diện tích của tam giác ABK và tam giác ABC.
Gợi ý đáp án:
Kẻ ME song song với AK (E ∈ BC).
Ta có:
Trong tam giác đường thẳng đi qua trung điểm của 1 cạnh và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ 3. Do đó E là trung điểm cạnh KC.
Suy ra ME là đường trung bình của tam giác ACK nên EC = KE = 2BK.
Ta có : BC = BK + KE + EC = BK + 2BK + 2BK = 5BK
(vì hai tam giác ABK và ABC có chung đường cao hạ từ A.
Bài 7 (trang 132 SGK Toán 8 Tập 2)
Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E. Chứng minh BD = CE.
Gợi ý đáp án:
AK là đường phân giác của tam giác ABC (gt) nên
(1) (tính chất đường phân giác của tam giác)
Vì MD // AK (gt) nên:
và
Do đó:
(2) và (3) (tính chất hai tam giác đồng dạng)
Từ (1), (2) và (3) ta có: (4)
Do BM = CM (vì M là trung điểm) nên từ (4) suy ra: BD = CE.
Bài 8 (trang 132 SGK Toán 8 Tập 2)
Trên hình 151 cho thấy ta có thể xác định chiều rộng BB’ của khúc sông bằng cách xét hai tam giác đồng dạng ABC và AB’C’. Hãy tính BB’ nếu AC = 100m, AC’ = 32cm, AB’ = 34m.
Hình 151
Gợi ý đáp án:
Ta có:
(tính chất hai tam giác đồng dạng)
Mà AB=AB’+BB’
Bài 9 (trang 132 SGK Toán 8 Tập 2)
Cho tam giác ABC có AB < AC, D là một điểm nằm giữa A và C. Chứng minh rằng:
Gợi ý đáp án:
a) Chứng minh
Xét ∆A) v(∆A) có:
chung (gt)
(gt)
(g.g)
b) Chứng minh
Xét ∆ABD và ∆ACB có:
chung
Suy ra (c.g.c)
(Tính chất hai tam giác đồng dạng).
Vậy
Bài 10 (trang 132 SGK Toán 8 Tập 2)
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 12cm, AD = 16cm, AA’ = 25cm.
a) Chứng minh rằng các tứ giác ACCA’, BDD’B’ là những hình chữ nhật.
b) Chứng minh rằng AC’2 = AB2 + AD2 + AA’2.
c) Tính diện tích toàn phần và thể tích của hình hộp chữ nhật.
Gợi ý đáp án:
a) ABCD.A’B’C’D’ là hình hộp chữ nhật
⇒ AA’ // CC’, AA’ = CC’
⇒ AA’C’C là hình bình hành
Lại có : AA’ ⊥ (ABCD) ⇒ AA’ ⊥ AC ⇒
⇒ Hình bình hành AA’C’C là hình chữ nhật.
Chứng minh tương tự được tứ giác BDD’B’ là những hình chữ nhật
b) Áp dụng định lý Pytago:
Trong tam giác vuông ACC’ ta có:
AC’2 = AC2 + CC’2 = AC2 + AA’2
Trong tam giác vuông ABC ta có:
AC2 = AB2 + BC2 = AB2 + AD2
Do đó: AC’2 =AB2 + AD2 + AA’2.
c) Hình hộp chữ nhật được xem như hình lăng trụ đứng.
Diện tích xung quanh:
Sxq = 2.(AB + AD).AA’
= 2.(12 + 16).25
= 1400 (cm2 )
Diện tích một đáy:
Sđ = AB.AD
= 12.16
= 192 (cm2 )
Diện tích toàn phần:
Stp = Sxq + 2Sđ
= 1400 + 2.192
= 1784 (cm2 )
Thể tích:
V = AB.AD.AA’
= 12.16.25
= 4800 (cm3 )
Bài 11 (trang 132 SGK Toán 8 Tập 2)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = 20cm, cạnh bên SA = 24cm.
a) Tính chiều cao SO rồi tính thể tích của hình chóp.
b) Tính diện tích toàn phần của hình chóp.
Gợi ý đáp án:
a) Vì S.ABCD là hình chóp tứ giác đều nên ABCD là hình vuông.
Do đó,
Vì SO là đường cao nên hay vuông tại O.
Áp dụng định lí Pitago ta có:
b) Gọi) là trung điểm của CD. Suy ra SH vuông góc với CD (do tam giác SCD cân tại S)
Xét tam giác SHD vuông tại H, theo định lý Pytago ta có:
Cảm ơn bạn đã theo dõi bài viết Giải Toán 8: Ôn tập cuối năm Giải SGK Toán 8 Tập 2 (trang 130, 131, 132) của Pgdphurieng.edu.vn nếu thấy bài viết này hữu ích đừng quên để lại bình luận và đánh giá giới thiệu website với mọi người nhé. Chân thành cảm ơn.