pgdphurieng.edu.vn - Kiến Thức Bổ Ích

Bất đẳng thức nesbit là gì và những điều cần biết

Tháng 10 28, 2023 by Pgdphurieng.edu.vn

Bạn đang xem bài viết Bất đẳng thức nesbit là gì và những điều cần biết tại Pgdphurieng.edu.vn  bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Bất đẳng thức đáng nhớ là kiến thức quan trọng trong chương trình Toán học cho các em học sinh. Có rất nhiều bất đẳng thức mà học sinh phải ghi nhớ khi còn ngồi trên ghế nhà trường.  Một trong số đó là bất đẳng thức nesbit. Vậy bất đẳng thức nesbit là gì, công thức vận hành như thế nào thì hãy cùng Reviewedu.net tìm hiểu qua bài viết dưới đây nhé!

Mục Lục Bài Viết

  • Bất đẳng thức nesbit là gì?
  • Chứng minh bất đẳng thức nesbit
    • Cách thứ nhất
    • Cách thứ hai
    • Cách thứ ba
  • Bài tập ứng dụng bất đẳng thức nesbit

Bất đẳng thức nesbit là gì?

Trong toán học, b là một trường hợp đặc biệt của bất đẳng thức Shapiro khi số phần tử là 3. Nó được phát biểu như sau:

Cho a,b,c là ba số thực dương. Khi đó ta có:

bất đẳng thức nesbit

Chứng minh bất đẳng thức nesbit

Chứng minh

Bất đẳng thức này có nhiều cách chứng minh. Dưới đây trình bày 2 cách.

Cách thứ nhất

Bắt đầu từ bất đẳng thức Nesbitt (đề xuất năm 1903)

chứng minh bđt nesbit

Biến đổi vế trái:

chứng minh bất đẳng thức nesbit

Thêm một bước biến đổi:

chứng minh bất đẳng thức nesbit

Chia cả hai vế cho 3 và chuyển vế:

chứng minh bđt nesbit

Vế trái là trung bình cộng, vế phải là trung bình điều hoà, do vậy bất đẳng thức đúng, ta có điều cần chứng minh.

Tham Khảo Thêm:   Review Trường Cao đẳng Công nghệ – Kinh tế và Thủy lợi miền Trung có tốt không?

(Ta cũng có thể sử dụng trung bình nhân của ba biến để chứng minh).

Cách thứ hai

Không mất tổng quát, giả sử a>=b>=c, ta có:

chứng minh bđt nesbit

Đặt:

chứng minh bđt nesbit

chứng minh bđt nesbit

Tích vô hướng của 2 vectơ trên cực đại theo Bất đẳng thức hoán vị nếu chúng được xếp cùng hướng. Đặt và là các vector thu được từ chuyển tương ứng 1 và 2 vị trí, ta có:

chứng minh bđt nesbit

chứng minh bđt nesbit

Cộng 2 bất đẳng thức trên ta được bất đẳng thức Nesbitt.

Cách thứ ba

đặt S= a/(b+c) + b/(c+a) + c/(a+b)

M= b/(b+c) + c/(c+a) + a/(a+b)

N= c/(b+c) + a/(c+a) + b/(a+b)

có M+N=3

áp dụng bất đẳng thức AM-GM

M+S>=3

N+S>=3

=>M+N+2S>=6

=>2S+3>=6

=>S>=3/2(đpcm)

Bài tập ứng dụng bất đẳng thức nesbit

Bài tập 1. Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng: 1 a2 (b + c) + 1 b2 (c + a) + 1 c2 (a + b) ≥ 3 2 

Lời giải. Ta có: ∑ 1 a2 (b + c) = ∑ abc a2 (b+ c) = ∑ bc ab + ca ≥ 3 2 Đẳng thức xảy ra khi và chỉ khi a = b = c = 1

Bài tập 2. Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng: a (b + c) 2 + b (c + a) 2 + c (a + b) 2 ≥ 9 4 (a + b + c) 

Lời giải. Ta viết lại bất đẳng thức: (a + b+ c) ( a (b + c)2 + b (c + a)2 + c (a + b)2 ) ≥ 9 4 Theo bất đẳng thức Cauchy − Schwarz có: (a + b + c) ( a (b + c)2 + b (c + a)2 + c (a + b)2 ) ≥ ( a b+ c + b c + a + c a + b )2 ≥ 9 4 Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

Bài tập 3. Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng: 1 a (b + 1) + 1 b (c + 1) + 1 c (a + 1) ≥ 3 2 

Tham Khảo Thêm:   [Review] Trường mầm non hòa nhập Phước An – Bà Rịa – Vũng Tàu

Lời giải. Đặt a = x/y, b = y/z, c = z/x, ta có: ∑ 1 a (b + 1) = ∑ yz xy + zx ≥ 3 2 Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

Bài tập 4. Cho a, b > 0 và x, y, z là các số dương tuỳ ý. Tìm giá trị nhỏ nhất của: x2 (ay + bz)(az + by) + y2 (az + bx)(ax+ bz) + z2 (ax+ by)(ay + bx) 

Lời giải. Theo bất đẳng thức AM −GM có: (ay + bz)(az + by) ≤ (ay + bz + az + by) 2 4 = (a + b)2(y + z)2 4 ≤ (a + b) 2(y2 + z2) 2 Suy ra, x2 (ay + bz)(az + by) ≥ 2x 2 (a + b)2(y2 + z2) Tương tự, ta có: y2 (az + bx)(ax+ bz) ≥ 2y 2 (a + b)2(z2 + x2) z2 (ax + by)(ay + bx) ≥ 2z 2 (a + b)2(x2 + y2) Do đó, ∑ x2 (ay + bz)(az + by) ≥ 2 (a + b)2 ( x2 y2 + z2 + y2 z2 + x2 + z2 x2 + y2 ) ≥ 3 (a + b)2

Xem thêm:

Bất đẳng thức trong tam giác

Bất đẳng thức lượng giác

Bất đẳng thức cosi

Cảm ơn bạn đã xem bài viết Bất đẳng thức nesbit là gì và những điều cần biết tại Pgdphurieng.edu.vn  bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

Nguồn: https://reviewedu.net/bat-dang-thuc-nesbit-la-gi-va-nhung-dieu-can-biet

Bài Viết Liên Quan

Khối S và S01
Khối S01 là gì? Gồm những môn nào? Xét ngành nào, trường nào?
Review Trường THPT Trần Hữu Trang
[Review] Trường THPT Trần Hữu Trang – Hồ Chí Minh
Review Trung tâm Ngoại ngữ Tin học Anh Việt
[Review] Trung tâm Ngoại ngữ Tin học Anh Việt – Tây Ninh
Previous Post: « Cách tải và cài đặt Genymotion cho máy tính
Next Post: Màn hình Retina trên iPhone, iPad, MacBook là gì? »

Primary Sidebar

Tra Cứu Điểm Thi

  • Tra Cứu Điểm Thi Lớp 10
  • Tra Cứu Điểm Thi Tốt Nghiệp THPT
  • Tra Cứu Đại Học – Tìm Trường

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online Hữu Ích

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết Hữu Ích

DMCA.com Protection Status DMCA compliant imageCopyright © 2025 · Pgdphurieng.edu.vn - Kiến Thức Bổ Ích 78win xoilac tv xem bong da truc tuyen nhà cái ww88 KUBET 78win